IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Preliminary studies for ASTRID-like SFR implementation in the CLASS code

2nd Technical Workshop on Fuel Cycle Simulation

July 19th - 21st 2017

Columbia, South Carolina U.S.A.

Neutronics and Criticality Safety Department

19/07/2017

Léa Tillard, Ph.D. Student <u>lea.tillard@irsn.fr</u> Dr. Jean-Baptise Clavel <u>jean-baptiste.clavel@irsn.fr</u>

© IRSN

Outline

Objectives

Simulation tools

Geometry modeling

Preliminary results

- Static calculations
- Depletion calculations

Conclusion & Perspective

Objectives

Long term objectives

- Scenario simulations (integrating ASTRID-like SFR) \rightarrow CLASS code
- Estimation of the accuracy associated with Physic models
 - Fuel production & evolution
- Databank (K_{eff}, Flux, XS): many depletion calculations

Medium term objectives

- Many full core calculations: static & depletion simulations
- ASTRID-like SFR: 2 types of axially heterogeneous assembly
 - Huge cost in term of CPU time & memory resources

Short term objectives

- Assembly calculations: full core preparation → tools & methods
- Accuracy & CPU time optimization
 - Methods used for full core calculations

Core Library for Advanced Scenario Simulation

Objectives

Long term objectives

- Scenario simulations (integrating ASTRID-like SFR) \rightarrow CLASS code
- Estimation of the accuracy associated with Physic models
 - Fuel production & evolution
- Databank (K_{eff}, Flux, XS): many depletion calculations

Medium term objectives

- Many full core calculations: static & depletion simulations
- ASTRID-like SFR: 2 types of axially heterogeneous assembly
 - Huge cost in term of CPU time & memory resources

Short term objectives

- Assembly calculations: full core preparation → tools & methods
- Accuracy & CPU time optimization
 - Methods used for full core calculations

Core Library for Advanced Scenario Simulation

Objectives

Long term objectives

- Scenario simulations (integrating ASTRID-like SFR) \rightarrow CLASS code
- Estimation of the accuracy associated with Physic models
 - Fuel production & evolution
- **Databank** (K_{eff}, Flux, XS): many depletion calculations

Medium term objectives

- Many full core calculations: static & depletion simulations
- ASTRID-like SFR: 2 types of axially heterogeneous assembly
 - Huge cost in term of CPU time & memory resources

Short term objectives

- Assembly calculations: full core preparation → tools & methods
- Accuracy & CPU time optimization
 - Methods to be used for full core calculations

Core Library for Advanced Scenario Simulation

Simulation tools

Monte-Carlo calculations: MORET 5.D.1 Beta

- Criticality code
- Soon available at OECD

Depletion calculations: VESTA 2.2 Beta

- Thin multigroup calculation (43 000 groups)
- Version 2.1.5 available at OECD
- Nuclear data: JEFF.3.1

Parametrical calculations launching: Prométhée

- Parallel distribution of calculations
- Algorithms for advanced engineering based on R language
- Post-processing: R scripts
 - (Library plotly, rCharts, devtools)

Geometry modeling

7 With the MORET code

2 types of hexagonal assembly

- External: 1 fissile area, 1 fertile area
- Internal: 2 fissile areas, 2 fertile areas
- Depletion: 1 fuel / zone / assembly
- 217 identical fuel pins per assembly
- Helicoidally spacer wires: not modelled
- Semi-infinite calculation

Geometry modeling

With the MORET code

2 types of hexagonal assembly

- External: 1 fissile area, 1 fertile area
- Internal: 2 fissile areas, 2 fertile areas
- Depletion: 1 fuel / zone / assembly
- 217 identical fuel pins per assembly
- Helicoidally spacer wires: not modelled

Sodium

-0.214

Y 0.428

0.214

0.0

Х

Semi-infinite calculation

Léa TILLARD - IRSN / PSN-EXP / SNC / LNC - Preliminary studies for ASTRID-like SFR implementation in the CLASS code - 19/07/2017- © IRSN

0.214

0.428

> Void

Preliminary results

Static calculations: internal assembly

7 Experimental plan

Simulation parameters

- 10 inactive cycles (choice)
- Active cycles
- \rightarrow [20 , 50 , 100 , 150 , 200 , 500]
- Number of source particles per zone
- \rightarrow [1 , 5 , 10 , 15 , 20 , 30 , 50 , 100]

Number of particles

 $N_p \times N_{ca} \times N_{pins} \times N_{zones}$

A priori selected criteria

- CPU time < 10 min</p>
- Uncertainty on $K_{eff} \sim 1.5\%$ Values on full
- Uncertainty on Flux ~ 1%
 assembly

Same parameters for both assembly

Léa TILLARD - IRSN / PSN-EXP / SNC / LNC - Preliminary studies for ASTRID-like SFR implementation in the CLASS code - 19/07/2017- © IRSN

Parallel plot of the simulations

Static calculations: internal assembly

A priori selected criteria

- CPU time < 10 min</p>
- Uncertainty on $K_{eff} \sim 1.5\%$ Values on full
- Uncertainty on Flux ~ 1%

Values on ful assembly

Static calculations: internal assembly

Parallel plot of the simulations n CA n tot CPU.time std Keff std Flux n P Keff Flux 100 500 0.0025 -3.07 40,000,000 -198.5 1.066 2.5-80 400 -0.0020 600· 198.0 30,000,000 -1.064 -2.0-60 0.0015 -300 -197.5 400 1.5 -20,000,000 -1.062 197.0 40 0.0010 200 -1.0-200 196.5 -10,000,000 1.060 20 0.0005 100 -0.5 -196.0

A priori selected criteria

- CPU time < 10 min
- Uncertainty on $K_{eff} \sim 1.5\%$ Values on full
- Uncertainty on Flux ~ 1%

assembly

Selected parameters: 50 active cycles Internal: **External:** 4340 part/cycle 2170 part/cycle 9.03 min 2.35 min

Léa TILLARD - IRSN / PSN-EXP / SNC / LNC - Preliminary studies for ASTRID-like SFR implementation in the CLASS code - 19/07/2017- © IRSN

IRS

Depletion calculations: internal assembly

7 Experimental plan

Simulation data

- Burnup: 110 GWd/t
- Mean power: 5.12 MWth
- Irradiation time: 2817 d

Modelling parameters

- Number of timesteps
- \rightarrow [1, 4, 6, 8, 10, 15, 25, 50, 75, 100]
- Propagation of statistical Monte-Carlo uncertainty (random seed)
- → 50 seeds [1000: 246000]

Quantity of interest

- Reaction: Fission, Capture, (n,2n)
- Isotope: ²³⁸U, ²³⁹Pu, ²³⁷Np, ²⁴³Cm, ...
- K_{eff} & associated uncertainty, Flux & Power, XS, Composition

Depletion calculations: internal assembly

0.99

0 00 0.992

0.99 0.988

Experimental plan

Simulation data

- Burnup: 110 GWd/t
- Mean power: 5.12 MWth
- Irradiation time: 2817 d

Modelling parameters

- Number of timesteps
- \rightarrow [1, 4, 6, 8, 10, 15, 25, 50, 75, 100]
- Propagation of statistical Monte uncertainty (random seed)
- → 50 seeds [1000: 246000]

Quantity of interest

- Reaction: Fission, Capture, (n,2n)
- Isotope: ²³⁸U, ²³⁹Pu, ²³⁷Np, ²⁴³Cm
- K_{eff} & associated uncertainty, Flux & Power, XS, Composition

₩ 0.986 0.984 0.982 d^{.98} 0.978

0.976 0.974 0.972 95 100 105 110 115 120 125 Burnup (MWd/kgHM)

100 timesteps: reference calculation to estimate differences due to the number of timesteps

Léa TILLARD - IRSN / PSN-EXP / SNC / LNC - Preliminary studies for ASTRID-like SFR implementation in the CLASS code - 19/07/2017- © IRSN

Reference calculation for timesteps impact

Evolution of Keff(BU) pour 100 & 200 timesteps

System_100S5

•••• System_200S5

Example of K_{eff} Impact of the timestep number

Deviation between the reference polynomial interpolation and for other timesteps

Envelope of the evolution of Keff(BU) for 10 timesteps & different random seeds

Léa TILLARD - IRSN / PSN-EXP / SNC / LNC - Preliminary studies for ASTRID-like SFR implementation in the CLASS code - 19/07/2017- © IRSN

IRS

オ Example of K_{eff}

10 timesteps:

0.29% of relative difference compared to 100 timesteps

0.38% of relative error due to random seed

IRSN

Impact of the timestep number

Maximal polynomial difference compared to the reference

A priori selected criteria

- Uncertainty on K_{eff} ~ 1.5‰
- Uncertainty on Flux ~ 1%

Léa TILLARD - IRSN / PSN-EXP / SNC / LNC - Preliminary studies for ASTRID-like SFR implementation in the CLASS code - 19/07/2017- © IRSN

IRS

Impact of the timestep number

Maximal polynomial difference compared to the reference

A priori selected criteria

- Uncertainty on K_{eff} ~ 1.5‰
- Uncertainty on Flux ~ 1%

Deviation due to timestep number variation

A priori selected criteria

- Uncertainty on $K_{eff}~$ ~ 1.5‰
- Uncertainty on Flux ~ 1%

From the terms of the seed Seed

Relative error for 10 timesteps

- 0.38% on the $\rm K_{\rm eff}$
- 2.25% on Flux, Upper Fissile zone
- 1.83% on Flux, Internal Fertile zone
- 2.94% on Flux, Lower Fissile zone
- 4.26% on Flux, Fertile Blanket

Deviation due to timestep number variation

From the term of the seed Seed

Relative error for 10 timesteps

- 0.38% on the $K_{\rm eff}$
- 2.25% on Flux, Upper Fissile zone
- 1.83% on Flux, Internal Fertile zone
- 2.94% on Flux, Lower Fissile zone
- 4.26% on Flux, Fertile Blanket

*Error*_{random seed} > *Difference*_{timesteps}

Depletion calculations: XS & Composition

Same method for other quantities of interest

- Similar trends: no visible gain for $timesteps \ge 10$
- Error_{random seed} generally superior than Difference_{timesteps}

Additional observation

Relative error due to the random seed for 10 timesteps

CompositionIsotopeUpper Fissile zone EOCFertile Blanket EOC238U0.11 %0.08 %239Pu0.13 %0.77 %237Np2.52 %5.59 %243Cm0.75 %4.83 %

IRS

14/15

Conclusion & perspective

Final objective

- Integration of ASTRID-like SFR into CLASS code
- Utilisation of physic models based on databanks
- Accuracy of model predictions \rightarrow Errors associated with the quantities of interest

Objective of this preliminary study

 Development of tools & methods to estimate errors at each step of the databank generation

Conclusion & perspective of this preliminary study

- Might be sufficient to use a relatively low number of timesteps
- Increase of the statistical error with 10 timesteps during the depletion calculation
- Under-estimation of the number of neutrons during the static calculation
- Trade-off between CPU time and number of neutron increase
- \rightarrow Iteration of the method with more particle to confirm previous conclusion
- \rightarrow Estimation of error due to the random seed for 100 timesteps

Conclusion & perspective

Final objective

- Integration of ASTRID-like SFR into CLASS code
- Utilisation of physic models based on databanks
- Accuracy of model predictions \rightarrow Errors associated with the quantities of interest

Objective of this preliminary study

 Development of tools & methods to estimate errors at each step of the databank generation

Conclusion & perspective of this preliminary study

- Might be sufficient to use a relatively low number of timesteps
- Increase of the statistical error with 10 timesteps during the depletion calculation
- Under-estimation of the number of neutrons during the static calculation
- Trade-off between CPU time and number of neutron increase

 \rightarrow Iteration of the method with more particles to confirm previous conclusions

 \rightarrow Estimation of error due to the random seed for 100 timesteps

Thank you for your attention

