Economics and Resources Analysis of the Potential Use of Reprocessing Options by a Medium Sized Nuclear Reactor Fleet

> Iván Merino Rodríguez Francisco Álvarez-Velarde <u>Aris V. Skarbeli</u> Enrique M. González-Romero

2<sup>nd</sup> Technical Workshop on Fuel Cycle Simulation South Carolina, 19<sup>th</sup> July 2017

#### CIEMAT

Economics & Resources Analysis...

TW. on Fuel Cycle Simulation

South Carolina, 19<sup>th</sup> July 2017



### $\mathsf{EVOLCODE}/\mathsf{TR}_\mathsf{E}\mathsf{VOL}\ \mathsf{codes}$

Economics & Resources Analysis...

TW. on Fuel Cycle Simulation

South Carolina, 19th July 2017

<ロ> (日) (日) (日) (日) (日)

2 / 11



#### Centro de Investigaciones Energiticas, Medicambientales

### EVOLCODE/TR\_EVOL codes

EVOLCODE: irradiation libraries

Economics & Resources Analysis...

TW. on Fuel Cycle Simulation

South Carolina, 19th July 2017

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

2 / 11



#### $\mathsf{EVOLCODE}/\mathsf{TR}_\mathsf{E}\mathsf{VOL}\ \mathsf{codes}$

- EVOLCODE: irradiation libraries
- TR\_EVOL: simulation of the whole fuel cycle (reactors, fabrication and reprocessing plants) providing isotopic mass flows at different stages



Economics & Resources Analysis...

TW. on Fuel Cycle Simulation

South Carolina, 19<sup>th</sup> July 2017

- 2

3 / 11

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト



Investment cost: overnight and financial

3

3 / 11

イロト イポト イヨト イヨト



- Investment cost: overnight and financial
- Fuel cost: front end and reprocessing if needed



- Investment cost: overnight and financial
- ► Fuel cost: front end and reprocessing if needed
- Operation & Maintenance cost



- Investment cost: overnight and financial
- Fuel cost: front end and reprocessing if needed
- Operation & Maintenance cost
- Decommissioning & Dismantling and Disposal Cost:
  - Decommissioning & Dismantling as a fraction of overnight cost
  - Disposal includes transport, storage, management, facility cost and encapsulation ones in the case of final disposal
  - Number of packages in the final disposal limited by spent fuel mass and thermal limit

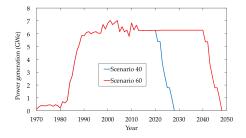
3 / 11

イロト イポト イヨト イヨト



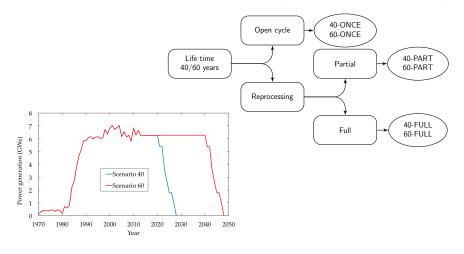
- Investment cost: overnight and financial
- Fuel cost: front end and reprocessing if needed
- Operation & Maintenance cost
- Decommissioning & Dismantling and Disposal Cost:
  - Decommissioning & Dismantling as a fraction of overnight cost
  - Disposal includes transport, storage, management, facility cost and encapsulation ones in the case of final disposal
  - Number of packages in the final disposal limited by spent fuel mass and thermal limit

 $\mathsf{LCOE}\xspace$  of cycle =  $\mathsf{LCOE}\xspace$  of each reactor weighted by his contribution to park energy




### Simulation of the Spanish nuclear power fleet (PWR's & BWR's mixture)

イロト イポト イヨト イヨト




Simulation of the Spanish nuclear power fleet (PWR's & BWR's mixture)



Соненнос в соненнос в соненности и соненно

Simulation of the Spanish nuclear power fleet (PWR's & BWR's mixture)



Economics & Resources Analysis...

TW. on Fuel Cycle Simulation

South Carolina, 19<sup>th</sup> July 2017

3



 Only fuel and final disposal cost considered => comparison between different lifetimes not possible

3

5 / 11

イロト イポト イヨト イヨト



- Only fuel and final disposal cost considered => comparison between different lifetimes not possible
- $\blacktriangleright$  Scenarios with reprocessing cores loaded with 1/3 of MOX



- Only fuel and final disposal cost considered => comparison between different lifetimes not possible
- Scenarios with reprocessing cores loaded with 1/3 of MOX
- Recovered Pu and U<sub>rep</sub> in scenarios with full reprocessing strategies valued as assets (Scenarios FULL1 & FULL2)



Not enough Pu mass for MOX fabrication on scenarios with 60 year's lifetime  $\implies$  39 t of Pu must be borrowed. Returning of the lent Pu



Not enough Pu mass for MOX fabrication on scenarios with 60 year's lifetime  $\implies$  39 t of Pu must be borrowed. Returning of the lent Pu

- ▶ 60-PART1: UO<sub>2</sub>-SF and UO<sub>2</sub>-R-SF reprocessed plus some MOX-SF
- ▶ 60-PART2: UO<sub>2</sub>-SF and MOX-SF

イロト イポト イヨト イヨト

Совенноо редокаторования усовенноо редокаторования усовенноо редокаторования усовенных разликаторования ус Наприменных разликаторования усовенных разликаторования и токоо усовенных разликато

Not enough Pu mass for MOX fabrication on scenarios with 60 year's lifetime  $\implies$  39 t of Pu must be borrowed. Returning of the lent Pu

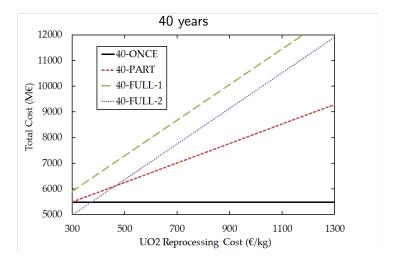
- ▶ 60-PART1: UO<sub>2</sub>-SF and UO<sub>2</sub>-R-SF reprocessed plus some MOX-SF
- 60-PART2: UO<sub>2</sub>-SF and MOX-SF

| Scenario | UO <sub>2</sub> -SF | $UO_2$ -R-SF | MOX-SF | HLWr | Gallery length |
|----------|---------------------|--------------|--------|------|----------------|
| 40-ONCE  | 6742                |              | _      | 2.5  | 23.9           |
| 40-PART  | 1919                | 664          | 447    | 141  | 22.7           |
| 40-FULL  | 0                   | 0            | 0      | 254  | 5.7            |
| 60-ONCE  | 9322                |              | —      | 2.5  | 33.1           |
| 60-PART1 | 0                   | 0            | 820    | 329  | 27.8           |
| 60-PART2 | 0                   | 1155         | 566    | 295  | 26.7           |
| 60-FULL  | 0                   | 0            | 0      | 369  | 10.4           |

(HLW on open cycle arises from some reprocessed nuclear fuel in the 80's)

Economics & Resources Analysis...




| Scenario | Pu (t) | $UO_2$ -R | Pu Open |
|----------|--------|-----------|---------|
|          | 51.2   | 2800      | 68.1    |
| 60-FULL  | 44     | 2376      | 93.2    |

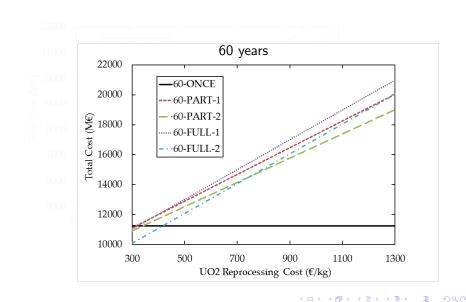
Economics & Resources Analysis...

TW. on Fuel Cycle Simulation

< → < → < ≥ > < ≥ > ≥
South Carolina, 19<sup>th</sup> July 2017





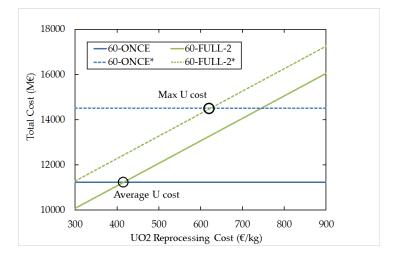

Economics & Resources Analysis...

TW. on Fuel Cycle Simulation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

8 / 11






Economics & Resources Analysis...

TW. on Fuel Cycle Simulation

South Carolina, 19th July 2017





Economics & Resources Analysis...

TW. on Fuel Cycle Simulation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

9 / 11





South Carolina, 19<sup>th</sup> July 2017

Centro de Investigaciones Energéticas, Medicambientale

10 /

#### Not possible to consume all the Pu

Economics & Resources Analysis...

TW. on Fuel Cycle Simulation



South Carolina, 19<sup>th</sup> July 2017

- Not possible to consume all the Pu
- > Pu limitation in an extended lifetime scenario



South Carolina, 19<sup>th</sup> July 2017

- Not possible to consume all the Pu
- Pu limitation in an extended lifetime scenario
- $\blacktriangleright$  Strong impact of  $U_{nat}$  and reprocessing price in fuel costs



South Carolina, 19th July 2017

- Not possible to consume all the Pu
- Pu limitation in an extended lifetime scenario
- Strong impact of  $U_{nat}$  and reprocessing price in fuel costs
- Fixed cost limits savings in reprocessing strategies



# Thank you for your attention!

aris.villacorta@ciemat.es

