

NEURAL NETWORK MODEL

PERFORMANCE ANALYSIS

B. MOUGINOT University of Wisconsin-Madison

TECHNICAL WORKSHOP ON FUEL CYCLE SIMULATION 2017/07

Prediction of neutronics metrics evolution during irradiation:

• Cross section (fission, capture (n,2n))

p(t)

• Neutron multiplication factor

 $MLP\{IV_{BoC},t\} = p(t)$

238PU

239pi

240PI

Proportion

in fresh

Building Upon Contribution from CLASS Community

PWR:

- MOX-Pu

B. Leniau, et al., "A neural network approach for burn-up calculation and its application to the dynamic fuel cycle code CLASS," Annals of Nuclear Energy, 81, (2015).

- MOX-Pu/Am

A.-A. Zakari-Issoufou, et al., "Americium mono-recycling in PWR: A step towards transmutation" Annals of Nuclear Energy, 102, (2016).

MOX-Pu/LEU

F. Courtin, et al., "Neutronic predictors for PWR fuelled with multi-recycled plutonium and applications with the fuel cycle simulation tool CLASS" Progress in Nuclear Energy, 100, (2017)

SFR

- MOX-Pu

B. Leniau, et al., "Generation of FBR-Na physics models for the nuclear fuel cycle code CLASS", PHYSOR 2016, USA

O Depletion with predicted cross sections

Predicted cross sections:

- fission
- capture
- (n,2n)

reference: MURE (all reactions)

From B. Leniau, et al., "A neural network approach for burn-up calculation and its application to the dynamic fuel cycle code CLASS," Annals of Nuclear Energy, 81, (2015).

MOX-TRU required for some Fuel cycle study with CYCLUS (see Model vs Recipe presentation):

- Training depletions calculations: N=10, 100, 1000, 5000, 10000,
- Assembly calculation: 1/10 of an assembly with mirror boundary condition[1],
- Depletion tool: MURE,
- Data base: JEFF 3.1.1,
- Initial composition sampled on a Latin Hypercube, 239Pu as filler

Param	235U	TRU frac	Pu236	238Pu	240Pu	241(Pu+Am)	241Pu/ 241(Pu+Am)	242Pu	237Np	242Am*	243Am	242Cm	243Cm	244Cm	245Cm	246Cm
min	0	0.03	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0
max	0.02	0.2	0.01	0.02	0.2	0.04	1	0.01	0.06	0.001	0.001	0.001	0.001	0.001	0.001	0.001

- Neural Network : TMVA [2]
- Hidden layer : 18,21,9
- Regression: Broyden-Fletcher-Goldfarb-Shannon method (back propagation). [2]
- Testing: 1000 depletion calculations inside sample space & 500 depletion calculations outside.

[1] N. Thiolliere, private communication. Subatch (2017).
[2] Hoecker, A., Speckmayer, P., Stelzer, J., Therhaag, J., von Toerne, E., Voss, H., 2007. TMVA: Toolkit for Multivariate Data Analysis, PoS ACAT, p. 040.

1000-2000 samples probably enough !

Prob. with the 10 000 samples: Not enough training cycles !? Decrease of the NN quality ?

Precision Map: N=10, "inside" test data

Reach the precision of the MC: σ_{MCNP} = 120 pcm

Precision improve with the density

Precision:

```
- 10 : σ > 1200 pcm | <σ> = 11e3 pcm
```


Precision Map: N=100, "inside" test data

Precision improve with the density

- 100 : σ > 800 pcm | <σ> = 1e3 pcm

Precision Map: N=1000, "inside" test data

0.00 0.01 0.02 0.03

Precision:

0.00 0.01 0.02 0.03

Reach the precision of the MC: 0.015 235U 0.010 $\sigma_{\rm MCNP}$ = 120 pcm 0.005 0.000 -0.25 0.20 Precision: 0.15 . 239Pu - 10 : σ > 1200 pcm | < σ > = 11e3 pcm Training Space 0.10 - 100 : σ > 800 pcm | <σ> = 1e3 pcm 0.05 - 1000: σ < 800 pcm | $<\sigma$ = 200 pcm 0.06 0.12 0.18 0.24

 σ grows outside of the training space !

Precision improve with the density

Precision Map: N=5000, "outside" test data

12

- Prediction of neutronics metrics evolution during irradiation:
 - Cross section
 - Neutron multiplication factor
- Extension to fuel composition ?

O Predicting other metrics?

- Prediction of neutronics metrics evolution during irradiation:
 - Cross section
 - Neutron multiplication factor
- Extension to fuel composition ?

Neural Network train on 5000 training sample, without topology optimisation

Prediction of the 239Pu content with a non optimised:

σ **= 4.2e-3**

Direct prediction of the composition !?

