Technical Workshop on Fuel Cycle Simulation

Fuel Cycle Confidence Improvement

20/07/2017

Baptiste Mouginot¹ Nicolas Thiolliere² Paul Wilson¹

- 1 University of Wisconsin-Madison, USA
- 2 Subatech, IMTA-IN2P3/CNRS-Université, Nantes, F-44307, France

Motivations

A fuel cycle model requirement is that output should represent « real case »

- Comparison with existing fleet
 - Complex history with lack on input data
 - Lack of output data
- Perform studies for prospective fleet
 - No data

Inter-code benchmarks are usually used to check models reliability but:

- Specifications interpretation depends on users
- Specifications evolves according to outputs Simulations simplifications induces deviations from specifications
- Simple exercices with clear specification Exercices design made upstream User runs exercices that fits with model

See Bo Feng (ANL) talk.

- Increasing complexity
- Sensitivity analysis

FCCI WORKFLOW

- 1. Experiments
 - Define facilities, links between facilities, simulation time
- 2. Problems
 - Number of facilities
- 3. Design of experiment
 - Fixed parameters
 - Input variables and range

- 4. Runs
 - A set of input variables
- 5. Sensitivity study
 - Sampling on input variable

Output File Structure

Thermal Power = f(t) U Np Pu Am Cm MA Pu8 Pu9 Pu0 Pu1 Pu2 U5 U8 Np7 Am1 Am3 Cm4 Cm5 Total Stock Tot. Facilities Facility 1 Facility 2 Hore and the second s

1. Experiment Simulation Time = 100 y

2.	Problem 1	Problem 2	Problem 3	Problem 4	Sensitivity
	1 PWR - UOx	2 PWR - UOx	2 PWR - UOx	2 PWR - UOx	10 PWR - UOx
3.	TStart = 0	TS1=0=TS2	TS1=0, TS2=50y	TS1=0, TS2=50y	$TS_i = TS_{i-1} + 10$
	TLife = 100y	TL1=100y=TL	TL1=100y=TL2	TL1=60y=TL2	$TL_i = 50y$

Λ		Run	1 Run	2 Run 3	Run 4 Run 5 Run 6		
4.		U5 Enr. != f(BU)			U5 Enr. = $f(BU)$	_	
	Reactor 1 (and 2)				same	5.	 CLASS Sample LHS - 2000 evt
	UOX enrich [%w]	3	4	5			
	BU (GWd/t]	30	40	50			 CYCLUS Sample LHS - 1000 evts
	spec power [GW/t]	40	30	20			
	size [t]	90	90	90			
	batching	3	4	3			
	If more than 1 reactor		mixing columns				

Exp 1 - Pr 1 - Run 3

Cycles steps is because we don't have access to reactor composition
 Very good agreement between CLASS and CYCLUS.

Exp 1 - Pr 4 - Run 5

Small deviation at B.O.S. due to month time step VS seconde time step
 High deviation at the shutdown of the first rector due to different management for reactor shutdown during a cycle.

Exp 1 - Pr 4 - Run 3 vs 6

Nicolas Thiollière.

PERSPECTIVES

- FCCI tries to aggregate a fuel cycle community for fuel cycle analysis improvement
- FCCI provides a framework for fuel cycle tools comparison
 - Very simple simulations with increasing complexity
 - Possibility to cross-check the model and to highlight bugs
 - Each steps add one new feature
 - Easier for understanding deviations
- FCCI provides open access to input and output data
 - New tool runs strengthen the knowledge
 - Each participant could make its own analysis
- FCCI is well suited for benchmarking and physical analysis
 - Increase the number of experiments
 - Improve the web site, and framework for data storage and analysis on line
 - Increase the number of associated fuel cycle tools