Rickshaw

Technical Workshop on Fuel Cycle
Simulation, July 20™, 2017

Columbia, South Carolina

Robert Flanagan, Anthony Scopatz




> Rickshaw g

« Rickshaw is a Python-powered stochastic driver for Cyclus. Rickshaw will
create randomly-generated, fully-valid Cyclus input files

« These simulations contain a variety of ‘niches’ to allow for different types of
fuel cycles.

 Once through

* Recycle - Single Pass or Multiple

« LWR or CANDU
« Can generate, and run, any number of Cyclus simulations (within machine

constraints).




Choose
Control

4 OW?
Choose
Niches
Choose Choose
Archetypes Commodities
Choose
Recipes
I
L4
Generate
> Input File

First, Rickshaw chooses the niches it will use
for a simulation.

» Niches cover types of fuel cycle facilities; mine,
reactor, enrichment, etc.

« Each niche can have several facilities within if;
for example reactor might contain - LWR, HWR,
etc.

Rickshaw then chooses a facility within each
niche.

Once this backbone for the simulation is
created, Rickshaw goes through each
facility, pings Cyclus to get the input for that
facility, and randomly generates values for
required fields.

Recipes are also randomized by Rickshaw.
Facilities have possible recipe templates
attach to them. The mass fractions of recipes
are generated randomly.



B Whye

 To model Cyclus simulations as a Gaussian process.

e |f we run sufficient simulations, we can break down a scenario into a set of

hyperparameters, and therefore predict results without running any further
Cyclus simulations.

« Furthermore, the Cyclus ecosystem was lacking a standardized method for
performing parameter sweeps.




> Template Mode

« As mentioned, Rickshaw can also be used as a tool for more defined
simulations.

« This is done by feeding Rickshaw with a input file containing the features
that need to be fixed.

* Any and all parts of a simulation can be fixed; niches, facilities in each niche, etc.

« Additionally a full cyclus input can be passed to Rickshaw with parameters to be
varied and how to vary them and Rickshaw will only vary those parameters.

« The randomization can be modified as well. Rickshaw accepts Jinja2 /
JSON / Python templating that allows you to choose how a randomized
field behaves.




Large Scale

Generating 100,000 input files for Cyclus is wonderful, but now they all need
to be run or we're just spinning our wheels.

On a person machine, this is going to take on the order of days.
Deploying these jobs to a compute cluster is more ideal.

Rickshaw currently does this automatically through two methods.
« Docker

 Blue Waters

Using Docker, Rickshaw attaches to a Docker manager and spawns the
jobs across a Docker Swarm.

This is done on our local cluster — Meeseeks (~32 cores).

Meeseeks can run over 1 million simulations in a week.



Larger Scale - Blue Waters

* In conjunction with University of lllinois at Urbana-Champaign, Rickshaw has
been set up to work with Blue Waters.

« Blue Waters is an NSF supercomputer.
* 49,000 cores (1 petaFlop)
 1.5PB Memory
« 26.5 PB Storage

« Blue Waters is significantly larger than Meeseeks ~ 10,000x larger

« As Blue waters doesn’t use Docker swarm, a special run method of
Rickshaw was built to specifically allow for this interaction.




Troubles

lnaz T T L R R R T T L B B | T T T T

m?E

Megabytes
H
<

H
[i=]
[=]

10! 107 10°
Simulations

10°

Namely, data...

A single, low-fidelity Cyclus simulation
output database can be on the order of
240 kb.

Putting multiple simulations intfo a single
data base helps to reduce the data sizes.

« 1 Simulation — 240 KB

« 10 Simulations — 460 KB

* 100 Simulations — 3.1 MB

« 2,000 Simulations — 57 MB
1,000,000 Simulations — 57 GB

Rickshaw's original goal was to eventually
reach 1 billion simulations. If trends continue
that would generate 57 TB of data.



> Troubles

« Analysis and visualization of such large datasets is difficult.

« Choosing chat parameters to look at and which objective functions make
sense for a broad range of fuel cycles.

« Varying all of the input fields within even a simple Cyclus simulation could
result in a parameter space of 10s to 100s.

« "“Curse of dimensionality”




> Future Work - Deployment

« Using Rickshaw as a stochastic deployment generator.

« Rickshaw utilizes the deploy institution in Cyclus to deploy facilities at
random through a simulation lifetime.

« By default all facility prototypes can be deployed in random numbers at each
time step in the simulation.

» This behavior is largely for the stochastic approach of running 1B simulations.

« Whatif you'd like to instead investigate a transition scenario?

» Decreasing chance of deploying an LWR until phase out at some cutoff
timestep.

* Increasing chance of deploying a FR starting at some timestep.




