# Rickshaw

Technical Workshop on Fuel Cycle Simulation, July 20<sup>th</sup>, 2017

Columbia, South Carolina

Robert Flanagan, Anthony Scopatz

#### Rickshaw



- Rickshaw is a Python-powered stochastic driver for Cyclus. Rickshaw will create randomly-generated, fully-valid Cyclus input files
- These simulations contain a variety of 'niches' to allow for different types of fuel cycles.
  - Once through
  - Recycle Single Pass or Multiple
  - LWR or CANDU
- Can generate, and run, any number of Cyclus simulations (within machine constraints).



- First, Rickshaw chooses the niches it will use for a simulation.
  - Niches cover types of fuel cycle facilities; mine, reactor, enrichment, etc.
  - Each niche can have several facilities within it; for example reactor might contain - LWR, HWR, etc.
- Rickshaw then chooses a facility within each niche.
- Once this backbone for the simulation is created, Rickshaw goes through each facility, pings Cyclus to get the input for that facility, and randomly generates values for required fields.
- Recipes are also randomized by Rickshaw.
   Facilities have possible recipe templates
  attach to them. The mass fractions of recipes
  are generated randomly.

# Mhàs

- To model Cyclus simulations as a Gaussian process.
- If we run sufficient simulations, we can break down a scenario into a set of hyperparameters, and therefore predict results without running any further Cyclus simulations.
- Furthermore, the Cyclus ecosystem was lacking a standardized method for performing parameter sweeps.

## Template Mode

- As mentioned, Rickshaw can also be used as a tool for more defined simulations.
- This is done by feeding Rickshaw with a input file containing the features that need to be fixed.
  - Any and all parts of a simulation can be fixed; niches, facilities in each niche, etc.
  - Additionally a full cyclus input can be passed to Rickshaw with parameters to be varied and how to vary them and Rickshaw will only vary those parameters.
- The randomization can be modified as well. Rickshaw accepts Jinja2 / JSON / Python templating that allows you to choose how a randomized field behaves.

## Large Scale

- Generating 100,000 input files for Cyclus is wonderful, but now they all need to be run or we're just spinning our wheels.
- On a person machine, this is going to take on the order of days.
- Deploying these jobs to a compute cluster is more ideal.
- Rickshaw currently does this automatically through two methods.
  - Docker
  - Blue Waters
- Using Docker, Rickshaw attaches to a Docker manager and spawns the jobs across a Docker Swarm.
- This is done on our local cluster Meeseeks (~32 cores).
- Meeseeks can run over 1 million simulations in a week.

## Larger Scale - Blue Waters

- In conjunction with University of Illinois at Urbana-Champaign, Rickshaw has been set up to work with Blue Waters.
- Blue Waters is an NSF supercomputer.
  - 49,000 cores (1 petaFlop)
  - 1.5PB Memory
  - 26.5 PB Storage
- Blue Waters is significantly larger than Meeseeks ~ 10,000x larger
- As Blue waters doesn't use Docker swarm, a special run method of Rickshaw was built to specifically allow for this interaction.

#### **Troubles**



- Namely, data...
- A single, low-fidelity Cyclus simulation output database can be on the order of 240 kb.
- Putting multiple simulations into a single data base helps to reduce the data sizes.
  - 1 Simulation 240 KB
  - 10 Simulations 460 KB
  - 100 Simulations 3.1 MB
  - 2,000 Simulations 57 MB
  - 1,000,000 Simulations 57 GB
- Rickshaw's original goal was to eventually reach 1 billion simulations. If trends continue that would generate 57 TB of data.

#### **Troubles**

- Analysis and visualization of such large datasets is difficult.
- Choosing chat parameters to look at and which objective functions make sense for a broad range of fuel cycles.
- Varying all of the input fields within even a simple Cyclus simulation could result in a parameter space of 10s to 100s.
  - "Curse of dimensionality"

## Future Work - Deployment

- Using Rickshaw as a stochastic deployment generator.
- Rickshaw utilizes the deploy institution in Cyclus to deploy facilities at random through a simulation lifetime.
  - By default all facility prototypes can be deployed in random numbers at each time step in the simulation.
  - This behavior is largely for the stochastic approach of running 1B simulations.
- What if you'd like to instead investigate a transition scenario?
  - Decreasing chance of deploying an LWR until phase out at some cutoff timestep.
  - Increasing chance of deploying a FR starting at some timestep.